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Abstract: - In medical imaging for clinical diagnosis and biomedical research magnetic resonance imaging 
(MRI) is one of the prevailing techniques. A lot of subjects of MRI are annoyed by the loud noise that MRI 
generates. In the present study computer simulation of active control of the noise induced by MRI was 
performed. The sound generated by the measurement sequences for the brain was recorded with an IC recorder 
in an MRI scanner room. Prediction of the time series of the sound was attempted using linear prediction and 
artificial neural networks (ANN). By subtraction of the predicted value from the sound value the sound 
intensity is reduced. With several optimization techniques of ANN such as steepest decent method, Levenberg-
Marquadt method, etc, active control of the noise was examined. In the present paper, the comparison of the 
simulation results of the prediction with those methods is described.  
 
 
Key-Words: - MRI, acoustic noise, active noise control, linear prediction, artificial neural networks, steepest 
decent method, Levenberg-Marquadt method 
 
1 Introduction 
Magnetic resonance imaging (MRI) is one of the 
prevailing techniques of medical imaging for 
clinical diagnosis and biomedical research. It 
employs a radio frequency magnetic field with large 
magnitude. A change in the Lorentz force emerges 
by switching of the field gradients. Such change 
causes alternation of contractions and expansions of 
gradient coils. The switching frequency is located in 
the rage of audio frequency. Therefore it generates 
loud acoustic noise that humans can hear [1], [2]. 
The sound intensity can be louder than 100dB. 

Although new types of the MRI scanner 
incorporate active noise control by themselves, most 
of the scanners that are currently operated in 
hospitals do not utilize such a technique. Therefore, 
most subjects there have to wear earplugs or head 
sets as passive noise control. Nonetheless the noise 
annoys the subjects of MRI.  

Some subjects complain of unpleasant feeling or 
even anxiety. Studies of physiological effects of the 
acoustic noise have demonstrated that exposure to 
loud sound of MRI could cause temporary threshold 
shifts, anxiety, mental fatigue, stress, fear and 
permanent hearing loss [3]-[5].  The influence on 
the human electroencephalogram also has been 
analyzed [6]. 

The research of active control of MRI sound has 
been conducted widely [7]-[11]. The effectiveness 
of linear prediction (LP) has been reported. 

Artificial neural networks (ANN) is one of the most 
effective techniques for adaptive control [12-14]. 
ANN can predict the time series that nonlinear 
systems generate. It is speculated that there is 
possibility that ANN gives a better performance of 
prediction of the sound generated by nonlinear 
systems than LP. MRI is one of nonlinear systems. 
However, the nonlinear active noise control using 
ANN for MRI noise reduction has not been 
sufficiently explored. 

In the present work, a simulation study of 
nonlinear active control of the noise induced by 
MRI was performed. The sound was recorded with 
an IC recorder in a MRI scanner room in Tokushima 
University Hospital. The time series of the sound 
were predicted by LP and ANN. The sound intensity 
is reduced by subtraction of the predicted value 
from the sound. Several techniques of optimization 
including steepest decent method, Levenberg-
Marquadt method, etc were examined together with 
ANN. In the present paper, the performance of the 
prediction of those methods is compared for three 
measurement sequences for the brain. 

 
 
2 Method 
A simulation study of active noise control of MRI 
sound associated with the measurement sequences 
for the brain was performed. 
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Fig. 1. Acoustic noise by MRI. 
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The sound was recorded with an IC recorder in a 
room of MRI scanner in Tokushima University 
hospital. The sampling frequency is 44.1kHz.  

Fig. 1 shows the waveforms of six measurement 
sequences, T1-weightened, T2-weightened, spoiled 
gradient (SPGR), diffusion weighted image (DWI), 
fluid attenuated inversion recovery (FLAIR) and 
magnetic resonance angiography (MRA).  

For each time series the period was determined by 
calculation of self-correlation coefficient. It was 
employed for the determination of prediction 
coefficients in LP and the training of ANN. 

A value in the time series was predicted from 
precedent three values. Other numbers of precedent 
values were also examined. Three values were 
enough to obtain good results. More values 
occasionally brought worse results. 

 
 

2.1 Linear prediction 
For linear prediction, the prediction coefficients were 
determined from the data in the first period of each 
time series. They were employed for the prediction 
of all the subsequent values. 
 
 
2.2 Artificial neural networks 
For prediction by ANN the networks were trained 
with the first period in each time series. That network 
was used for the prediction of all the subsequent 
values of the time series. The network is 
multilayered perceptron. Networks with different 
numbers of hidden layers and hidden units were 
examined.  

Bacpropagation was employed for the training of 
the networks. Additionally optimization techniques 
were incorporated. Four methods for optimization, 
steepest decent method, Newton method, quasi-
Newton method and Levenberg-Marquadt method 
for prediction were applied. The neural networks 
toolbox of MATLAB was used for this calculation. 
Training of the networks was stopped when the 
squared error is less than 10-6 or the number of 
training epochs is 4,000. 
 
 
3 Results 
The results of the simulation of the active control of 
acoustic noise of three measurement sequences for 
the brain are shown below. 
 
 
3.1 Prediction errors 

Fig. 2 shows the results of LP, and Fig. 3 shows the 
results of the prediction by ANN with LM. For ANN 
learning rate is 0.2. In the simulation for ANN, ANN 
with LM brought the best results. Fig. 3 illustrates 
the results in which the number of hidden layer is 
one, and the number of hidden units is 5. That 
network with larger number of hidden layers and 
hidden units did not give better results. The reason of 
this result could be overtraining. 

For both LP and ANN simulations the root-mean-
squared (RMS) value for every period of the sound 
data, and RMS value of the error, which is the 
difference between the predicted value and the sound 
datum value, for every period were calculated. 

In the figures, the rows illustrate the changes of 
the RMS value of the sound data Vs, the RMS value 
of the error Ve, and the ratio Ve / Vs, respectively, 
from the top.  

For T2-weightened, the RMS value of the sound 
data increases stepwise on the way. The error RMS 
value increases in connection with it. However, the 
error ratio does not increase significantly for LP. On 
the other hand, they increase for ANN. 

For SPGR, the RMS values of the sound data 
gradually decrease and after that increase again. The 
error ratios inversely increase and after that decrease 
for both LP and ANN. 

 
 

3.2 Average error ratio  
The average value of error ratios in each time series 
was calculated. Table 1 shows the average error 
ratios of LP, ANN with SD and ANN with LP. For 
T1-weightened sequence, DWI, FLAIR and MRA, 
the error ratio is slightly smaller in ANN with LM 
than LP.  For T2-weightened and SPGR, the results 
are opposite. However, the difference between the 
error ratio for LP and that for ANN with LM is very 
small for each sequence. The error ratio values for 
T1-weightened, T2-weightened, SPGR and MRA 
were about 5%. Those for DWI and FLAIR were 
about 9% and 8%, respectively.  

The error ratio in ANN with SD is much larger 
than those in LP and ANN with LM for each 
sequence. Moreover, the convergence of learning is 
very slow in ANN with SD. The error ratios in ANN 
with some other techniques are larger than those in 
LP and ANN with LM. 

This method will be able to be applied to the 
noise reduction of the practical MRI facility. 
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Fig. 2. Acostic noise reduction by linear prediction 
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Fig. 3. Acoustic noise reduction by artificial neural networks with Levenberg-Marquadt method. 
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Table 1. Average error ratios. 

 
 

4 Conclusion 
In the present study the performances of LP, and 
ANN with optimization techniques including 
steepest decent method (SD), Levenberg-Marquadt 
method (LM), etc were compared for the prediction 
of time series of acoustic noise in measurement 
sequences of an MRI scanner for the brain by 
computer simulation.  

LP and ANN with LM gave much smaller values 
of error, than ANN with SD and ANN techniques 
with some other methods. The error values in LP and 
ANN with LM were similar for all the sequences.  

For future work the performance of other 
techniques of nonlinear adaptive control will be 
investigated.  The implementation of this method in 
the practical MRI facility will be also attempted. 
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Method LP ANN(Steepest 
Decent) 

ANN(Levenberg
-Marquardt) 

T1-
weightened 0.0563 0.1460 0.0559 

T2-
weightened 0.0475 0.1283 0.0523 

SPGR 0.0539 0.2469 0.0557 

DWI 0.0943 0.2452 0.0896 

FLAIR 0.0814 0.6286 0.0808 

MRA 0.0564 0.1457 0.0506 
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